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Abstract 
This paper  considers the problem of learning the ranking of' a  set of' stochastic  alterna- 

tives  based  upon  incomplete  information  (i.e., a limited  number of samples). We describe 
a system that,  at each  decision  cycle, outputs either a complete  ordering  on the hypotheses 
or  decides to gather  additional  information (Le., observations) at some cost. The ranking 
problem  is  a  generalization of the previously  studied  hypothesis  selection  problem - in  se- 
lection, an algorithm  must  select the single  best  hypothesis,  while  in  ranking,  an  algorithm 
must  order  all the hypotheses. 

The central  problem we address  is  achieving the desired  ranking  quality  while  minimiz- 
ing the cost of acquiring  additional  samples. We describe  two  algorithms  for  hypothesis 
ranking and their  application  for the probably  approximately  correct (PAC) and expecked 
loss (EL) learning criteria. Empirical  results  are  provided to demonstrate the effectiveness 
of these  ranking  procedures  on  both  synthetic and real-world datasets. 

1. Introduction 

In many  applications,  the cost of information can  be  quite  high,  imposing a requirement 
that  learning  algorithms glean as much  usable information as possible  with a minimum of 
data. For example: 

0 Data may be scarce,  making  learning the most possible from  limited  training data 
key. 

0 In speedup  learning, minimizing processiug time is critical.  Here,  reducing the number 
of necessary training examples is  key since the expense of processing each  example 
can  be significant  (Tadepalli,  1992). 

0 In  decision tree  learning,  the cost of using  all  available training  examples  when evalu- 
ating  potential  attributes for partitioning  can  be  computationally expensive  (Musick, 
Catlett, & Russell, 1993). 

0 In  evaluating medical treatment policies, acquiring  additional  training  examples  might 
imply that  human  subjects  are exposed to   an experimental  treatment for a longer 
period  than is necessary. 

When  one wishes some  sort of guarantee  on  the  quality ofa  solution, a statistical decision 
theoretic framework  is  useful. The framework  answers the questions: How much information 
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is enough? At what  point  do we have adequate  information  to  rank the  alternatives  with 
some requested confidence? 

This  paper focuses on  parametric  ranking  problems, a general class of statistical ma- 
chine learning  problems  in  which the goal is to  rank a set of alternative  hypotheses  where 
the goodness of a hypothesis is a function of a set of parameters whose values are  unknown 
(e.g.,  Chien,  Stechert, & Mutz, 1998; Gratch, 1992; Greiner & Jurisica, 1992; Kaelbling, 
1993; Moore & Lee, 1994; Musick et  al.,  1993).  The  learning  system  determines  and re- 
fines estimates of these  parameters by using training  examples,  with a secondary goal of 
tl l irr imizirlg l e a r , t l i n K  cost,. 

T11c. 1)1 '111(: ip~l  c:ollt,rit)llt,iorls of this paper are: 

0 We define two families of hypothesis  ranking  algorithms,  based  on recursive selection 
and adjacency, respectively. We provide specific details  on how to  apply  them using 
the  probably  approximately correct (PAC)  and  expected loss (EL) decision criteria. 

0 We provide  empirical  results  demonstrating  the effectiveness of these  algorithms  at 
achieving the requested decision criteria  on  synthetic  data. 

0 We provide  empirical  results  showing that these  algorithms significantly outperform 
existing  statistical  methods  on real-world data from  spacecraft design optimization 
and image  compression applications. 

The  remainder of this  paper is structured  as follows. First, we describe the  hypoth- 
esis ranking  problem  more formally, including definitions for the  probably  approximately 
correct (PAC) and  expected loss (EL) decision criteria. We then define two algorithms for 
establishing  these  criteria for the hypothesis  ranking  problem - a recursive hypothesis se- 
lection  algorithm  and  an  adjacent  comparison  algorithm.  Next, we describe  empirical  tests 
demonstrating  the effectiveness of these  algorithms  as well as  documenting  their improved 
performance over a standard  algorithm from the  statistical  ranking  literature.  Finally, we 
describe  related work and  future  extensions  to  the  algorithms. 

2. Hypothesis Ranking Problems 

Hypothesis  ranking  problems  are  an  abstract class of learning  problems  where an  algorithm 
is given a set of hypotheses  to  rank.  The  ranking desired is that which orders  the  hypotheses 
by their expected utility, which is determined by the hypothesis'  underlying  probability 
distribution.  These  expected utilities are unknown to  the  algorithm  and  must  be  estimated 
from the  training  data. 

Hypothesis  ranking  problems  are  an  extension of hypothesis selection problems  (Chien, 
Gratch, & Burl,  1995),  in which a learning  system  attempts  to select the  best  alternative 
from a set of hypotheses. The  distinction between  hypothesis  ranking  and  hypothesis selec- 
tion is that,  in selection the  learning  algorithm is interested  in a single best  hypothesis, while 
i n  ranking. t,he lcarning  algorithm must determine  the  relative  order of all of the hypotheses'. 

Hypothesis selection and  ranking is an  important  aspect of many  machine  learning 
problems. For example, the  utility  problem  in  speedup  learning  can  be viewed as a selection 

1. The algorithms  and  results described  in this  paper  extend in  a  straightforward  fashion to  hybrid  ranking- 
selection problems in  which the  system  must select and  rank  the  top M out of N hypotheses. 
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problem  where a single problem-solving heuristic or strategy is chosen  from a larger  set of 
candidates.  In  this case, the  expected  utility is typically defined as  the average time  to solve 
a problem  (Gratch, 1992; Greiner & Jurisica, 1992; Minton,  1988).  The  attribute  selection 
problem  in  machine  learning  can also be viewed as a hypothesis  selection  problem  in  which 
one must select the  best  attribute  split  from a set of possible attribute  splits  and  utility 
is often  measured by information  gain  (Musick et  al.,  1993).  In reinforcement learning, a 
system  must  learn  the  appropriate  action for each context, where utility is interpreted as 
expected  reward  (Kaelbling,  1993).2 

A key observation  regarding each of these  problems  (and  all  learning  problems,  in gen- 
eral) is that each of them could be viewed as  an  optimization  problem,  where  the  utility 
is the  function  being  optimized.  Then,  the  application of traditional  (or  non-traditional) 
optimization  methods will yield good results  within  the  guarantees  provided by the algo- 
rithm  and  depending  on  the  features of the  landscape  being  optimized. However, with  the 
addition of a model of sampling  cost, a new degree of freedom is added  to  the  problem. 
Where  the cost of samples is very high,  traditional  optimization  algorithms will fare  poorly. 

Additionally, while in  many of the mentioned  applicat,ions t,hv system c,hooscs a sirlgl(' 
alternative  and never revisits  the decision, there  are also many c:ases for whic:h a s,yst,c:rrl 
will want to investigate  several  prioritized  options  (either serially or in parallel),  and hence 
a ranking is useful. Motivation is provided by the following scenarios: 

Upper  and  lower  bounds,  span: Minimax search algorithms  can use metaknowledge 
(such  as  upper  and lower bounds of a node) for pruning  other  parts of the  tree. Also, 
there  are  times when  knowing the  span of the  expected utilities of the  candidate  set is 
useful (e.g.,  when checking for convergence conditions  in an  adaptive  algorithm  such 
as a GA). 

Augmenting  external  knowledge: Another  area in which  hypothesis  ranking  may  have 
important  applications is hypothesis selection with llurnan supcrvision.  Wllor~ 1 l l r ~  

stochastic  objective  function  (i.e.,  the  hypothesis)  represents only a part of the prob- 
lem, the  ranking  can  be used to  augment  external knowledge of the  problem. For 
example,  engineering  simulations  usually  capture the physical properties of the candi- 
date designs,  but  usually choose to forego the  details of manufacturing, logistics, and 
economics. 

The entire  ranking: In some cases, the  entire  ranking is  significant.  For  instance, 
in  evolutionary  algorithms, the individuals  to  be  propagated  to  future  generations 
are  often  selected  with likelihood that is proportionate  to t,heir rank  in  the  current 
generation  (Goldberg, 1989). Another. exarnpl(! arises i n  t ~ h v  ('iLs(' of's(';lr.(.tl i t 1 ~ 0 1 ' i t  ttrtts 
that  take  advantage of node  ordering  heuristics. suc:h as I ~ L I I I  sewc,ll I ) I '  I I , ( ~ I . U  I V ( >  

broadening  (Ginsberg & Harvey, 1992). 

In any  hypothesis  evaluation  problem, always achieving a correct  ranking is impossible 
in  practice,  because  the  exact  underlying  probability  distributions  are  unknown.  Thus, 
there is  always a (perhaps  vanishingly)  small chance that  the  algorithms will be  unlucky 

2. Note  that  the analogous  reinforcement  learning  problem is the  one in which we are  learning  the  appro- 
~~ 

priate  action  with  immediate feedback rather  than delayed  feedback. 
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because  only a finite  number of samples  can  be  taken. Consequently, rather  than always 
requiring  an  algorithm  to  output a correct ranking, we impose  probabilistic  criteria  on  the 
rankings  to  be  produced. While several families of such  requirements  exist,  in  this  paper 
we examine two criteria:  the probably  approximately  correct (PAC)  model for selecting 
a hypothesis  function  that  approximates well a target  function  (Valiant, 1984) and  the 
cspectcd l o s s  (EL) requirement  frequently used in decision theory  and  gaming  problems 
( R ~ ~ s s c ~ l l  X r  Wdildtl. 1992).  IIlforrmlly. t ,o  sa.tisfy the PAC requirement,  an  algorithm  must 
produc~c! a rosult, that ,  wil,ll high probability is close to correct (e.g.,  incorrect  orderings will 
be  most likely to  occur between  hypotheses  with  similar  expected  utilities). The satisfy the 
EL requirement,  on  the  other  hand, a bound  must  be  established  on  the  expected loss of 
the  result,  where loss is the difference in  utilities between  two  incorrectly  ordered hypothese 
in  an  incorrect  ranking. 

The  expected  utility of a hypothesis  can  be  estimated by observing  its values over a 
finite set of training  examples. However, to  satisfy  the decision criteria,  an  algorithm  must 
also be  able  to  reason  about  the  potential difference between the  estimated  and  true  utilities 
of each hypotheses. Let Ui denote  the  true  expected  utility of hypothesis i and  let U i  be 
t h v  v s t , i r n a t t d  c.xpcvte:d lltility of hypothesis 1;. Without loss of generality,  let us presume 
t, t l ; \ . t  t I I O  1)roposwI r.mki11g of'hypot,hescls is U ,  > U, > ,  .. . ,  > U k - l  > U k .  

The PAC  requirement  states  that, for some user-specified E ,  with  probability 1 - 6: 

k - 1  

A [(Vi + E) > MAX(U;+1, ..., U k ) ]  

i=l 

In the context of the PAC criterion,  the  number E is called the indiflerence  interval and 

The issue of' how to  allocate  the overall ranking  error  among  the  many possible pairwise 

( ' O I  I ~ ~ ~ ~ ) o L I ( I I I I ~ I v .  U . ~ I C > I I  sc.loc.tillg a lIy~)ot,hesis H I  to he the  best  from  a  set of k hypothe- 

6 is the overall  ranking  error or total  error  rate. 

c~o~tlp~~.r isol ls  of hypothesc:~ is discussed in the next section. 

S( 'S  H ,  . . . . ~  N k ,  I(!t, t ,ll(\ s c , l r Y t r o n  loss  L be as follows. 

Then,  the ranking loss RL of a ranking H I ,  ..., H k  would be: 

k - 1  

RL(H1, ... , H k )  = L ( H ; ,  {Hi+1, ..., H k } )  

2 = 1  

"_____ 
'i 'rll(, c l ~ ~ t ~ ~ ~ c ~ t ~ o ~ ~  l ~ c , t \ v c ~ ~  t 1 1 c ~  t r l l r  m w n s  and the  cst,ilnat,ed means  (for  which we use the  sample  means) 

I:, ( I  1 o u t l t h l l l g  o n ( ' .  \ l ' h r l l  a.sscwmg thcx valldity of a ranking  produced by an  algorithm, one  would  use 
the  true  means of the  distributions (if available, as in test  distributions) or the most  accurate  estimation 
possible  (such as  from  an  edxtremely large  sampling of the  distribution). However, a ranking  algorithm 
uses the  estimated  parameters  (including  sample  mean)  to  estimate  the  error. For estimation of a single 
mean  the  estimate of the  mean is normally  distributed  around  the  true  mean so that  this usage is 
justified.  However, we have  not  proven (and  indeed  are  unsure)  whether using the  estimate in  more 
complex  ranking and selection contexts is guaranteed  correct (see later  section on the  heuristic  nture of 
our  algorithms). 
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A hypothesis  ranking  algorithm which  obeys the  expected loss requirement  must  produce 
rankings  that  on average have less ranking loss than  the requested  expected loss bound.  The 
policy for loss allocation is also discussed in  the  next  section. 

As an  example, consider ranking  the  hypotheses  with  expected utilities: Ul = 1.0, U, = 
0.95, Us = 0.86. The  ranking U, > UI > U, is a valid PAC ranking for t,h(-> indiffhr1c.c 
interval E = 0.06 but not for E = 0.01 and tlle observed ri1,Ilkillg loss is 0.05 +~ 0 0 . 0 5  

However, while the confidence in a pairwise comparison  between two hypot,heses is wcll 
understood  to  be  the complement of the  probability of the  comparison's  result  being  in 
error,  it is less clear how to define and  ensure  that a desired confidence is met  in the set of 
comparisons  required for a selection or  the even  more  complex  set of comparisons  required 
for a ranking.  Equation 4 defines the confidence that Ui + E > U j ,  when the  utilities  are 
normally  distributed  with  unknown  and  unequal variances. 

where q5 represents  the  cunlulative st,;tndarcl norrnal d is t~r i l )~~t , io r~  f 1 l I I ( , t , i o l 1 .  i \ l l ( l  ' t / .  r ' ,  , 
and Si-j are  the size, sample  mean,  and  san~ple st,antiarti tlcwiat,ion ( ~ f t , l l c x  t) loc*k(xl ~ l i f f ( ~ r ( ~ r l t  1i1.1 

distribution4, respectively. 
Likewise, computation of the  expected loss for asserting an ordering between a pair of 

hypotheses is well understood,  but  the  estimation of expected loss for an  entire  ranking is 
less clear. Equation 5 defines the expected loss  for drawing  the conclusion Ui > U j ,  again 
under  the  assumption of normality (see Chien  et  al., 1995, for further  details). 

In  the  next two  subsections, we describe two interpretations for estimating  tho likelihood 
that  an overall ranking satisfies the PAC or EL requirements by estimating  and  combining 
pairwise  PAC  errors or EL estimates.  Each of these  interpretations  lends itself directly  to 
an  algorithmic  implementation  as  described below. 

2.1 Ranking as Recursive  Selection 

One  obvious way to  determine a ranking H I ,  ..., H k  is to view ranking  as  recursive  selection 
from the  set of remaining  candidate  hypotheses.  In  this view, the overall ranking  error, 
as specified by the desired confidence in PAC  algorithms  and the loss threshold  in EL 
algorithms, is first distributed  among IC-1 selection  errors which are then  furt,her  subdivided 
into pairwise comparison errors (Figure 1). Dat,a is then sampled u n t i l  t,lle  c.stirriat,c:s of t ) l l t>  

pairwise  comparison  error  (as  dictated by equation 4 or 5 )  satisfy t j h v  bounds set) by  t > l l c >  

algorithm. 

4. Note  that  in  our  approach we block, or match,  examples  to  further  reduce  sampling  complexity. Blocking 
makes  estimates by using the difference  in utility  between  competing  hypotheses on each  observed  exam- 
ple. Blocking can significantly  reduce the variance in the  data when the  hypotheses  are  not  independent. 
The differential  distribution is formed  by  taking the differences of the blocked individual  samples to  form 
a  new distribution. I t  is trivial  to modify the formulas to  address  the cases  in  which it is not possible to  
block data (see  Moore & Lee, 1994; Chien  et  al., 1995, for further  details). 
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I ". 

Figure 1: Computing  the overall error of a recursive ranking. The per-comparison  errors 
are  summed  at each level in  the  recursion,  and  the overall sum  (across  all levels) 
is compared  with  the specified total  error, y*. 

Thus,  another degree of freedom  in the design of recursive ranking  algorithms is the 
method by which the overall ranking  error is ultimately  distributed  among  individual  pair- 
wise comparisons  between  hypotheses.  Two  factors influence the way in  which we compute 
error  distribution.  First,  our  model of error  combination  determines how the  error  allocated 
for individual  comparisons or selections combines into overall ranking  error  and  therefore 
how many  candidates  are available for the  distribution of error. 

Using  Bonferroni's  inequality,  which  asserts that  the  probability of a union of events is 
no greater  than  the  sum of the  probabilities of the  individual  events5, one would be inclined 
t,o cornhint> t h ~  errors addit,ively. However.  following a more conservative approach, one 
(:all assert, t,hat, txtc:a.use t,he predicted  "best"  hypothesis  may  change  during  sampling  in the 
worst case, the conclusion might depend  on all possible pairwise comparisons and  that  the 
error  should  be  distributed  among all (;) pairs of hypotheses.6 

Second,  our policy with  respect  to  allocation of error  among the  candidate  comparisons 
or  selections  determines how samples will be  distributed. For example,  in  some  contexts, the 
consequences of early selections far  outweigh  those of later selections. For these  scenarios, 
we have  implemented  ranking  algorithms that divide overall ranking  error  unequally  in 

5. Note  that  this is only thp simplest of the Bonferonni  inequalities, which fall into clean correspondence 
with thr terms of the expansmn of the  probability of a union of events according to  the principle of 
1r1(.111s1o11 ~ ~ l t l  ~ > ~ ( , I I I \ I O I I  I I I  a natlwal wav. 

0 E ' o t  ( I  f l l h f  I I S S I O I I  1 1 f  I 111s I . ~ V I O .  i('r p p  18-20 of (Grat,ch. 1993). 
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favor of earlier  selection^.^ Also, it is possible to divide selection error  into  pairwise  error 
unequally  based  on  estimates of hypothesis  parameters  in  order to reduce  sampling cost 
(for example,  Gratch,  Chien, & DeJong, 1994, allocates  error  rationally). 

Within  the  scope of this  paper, we only consider algorithms that:  (i) combine  pairwise 
error  into selection error  additively,  (ii)  combine selection error  into overall ranking  error 
additively,  and  (iii)  allocate  error equally at, each level. 

One  disadvantage of recursive selection is that once a hypothesis has beer1 selected, it, is 
removed  from the pool of candidate  hypotheses.  This is an issue in  rare cases when, while 
sampling  to  increase  the confidence of some later  selection,  the  estimate for a hypothesis' 
mean  changes  enough that some previously selected hypothesis  no longer dominates  it. 
However, it  remains  that  the  original  hypotheses were shown to  dominate  the  others with 
a  specified  level of certainty, y*. 

These  assumptions  result  in  the following formulations  (where 6(Ul DE (U2, ..., U k } )  is 
used to  denote  the  error  due  to  the  action of selecting hypothesis 1 under  Equation 1 
from the set { H I ,  ..., H k }  and 6(U1 D {U2, ..., U k } )  denotes  the  error  due  to  selection loss in 
situations where Equation 2 applies): 

Srec(U1 > u2 > . . .  > U k )  = Srec(UL > 1;3 > . .  > [ ' a )  
+b(u~ D, { U z ,  . . . ,  U k } )  

(6) 

where dreC(Uk)  = 0 (the base case for the  recursion)  and  the  selection  error is as defined 
in  (Chien  et  al., 1995): 

Algorithmically, we implement  this  with  the following pseudo-~dt. :  

ensure  there are no samples per hypothesis 
distribute the error to individual selections 
while (stopping criteria has  not  been  met) 

take  more  samples 
if (means are  ordered  differently than ranking) 

restart the algorithm 

An  analogous recursive selection algorithm  based  on  expected loss is defined as follows 

EL,.,,(C:i > C j  > . > ( ' k  J :- b . ' l I , , ,  ( I  . i , 1 ,  
+ f X ( U ,  D ( 1  ' 2 ? .  , I ' k  } j  

\ #  

where ELrec(Uk) = 0 and  the selection EL is as defined in  (Chien  et al., 1995): 

k 

EL(U1 D {Uz,  ..., 9 ) )  = EL(U1, Vi) 
i = 2  

7. Space  constraints  preclude  their  description here. 
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k ' I , q I m '  2 :  Com1)ut8ir1g t , l lv  ovc:Iall crroI i n  an acijacent, ranking.  Per-comparison  errors be- 
tween  neighboring  hypotheses  in  the  proposed  ranking  are  summed and compared 
with  the  required  total  error, y*. 

2.2 Ranking by Adjacency  Comparison 

Another  interpretation of ranking confidence (or loss) is that only adjacent  elements  in the 
r.n.rlkirlg n c w l  tw cmrnparcd. In this case. tho overall ranking  error is divided  directly  into 
1, I l ) i \ i t . ~ i s ( ~  ( ~ 0 ~ t ~ ~ ) i ~ ~ i ~ O ~ ~  errors (Figuro 2 ) .  This leads to the following confidence equation 
for the: PAC crikria,: 

And the following equation for the EL criteria. 

1 h . 1  : I I I S I ,  t m l l k i t ~ : :  I n  (~o~rllmr~isort of ;ttl,ja(.ent, hypotheses does not establish  dominance 
0 1 '  loss I ) O I I I I ~ I S  1 ) ( , t  W Y ~ ~  t l o l l - ~ ~ ( ~ ~ ~ ~ ( : ( ~ ~ l t ,  hypotheses (where  the  hypotheses  are  ordered by 
observed  mean utility),  it  has  the  advantage of requiring fewer comparisons than recursive 
selection  (and  thus may  require fewer samples  than recursive selection). However, for the 
same  reason,  adjacency  algorithms may  be less  likely than  the recursive selection  algorithms 
to  bound  the  probability of a correct ranking  (or average loss) correctly. In  the case of the 
PAC algorithms,  this is because  €-dominance is not necessarily transitive.  In  the case of the 
EL algorithms,  it is because  expected loss is not necessarily additive when  considering  two 
hypothesis  comparisons  sharing a common hypothesk8 

8. An example where ranking loss between non-adjacent  hypotheses exceeds the desired loss bound for 
the  rankmg. cven though the sum of the  adjacent losses does not, occurs  when the blocked differential 
tlist,ributwn int lucwi by t,wo non-adjacent  hypotheses has high variance relative  to  an  hypothesis  adjacent 
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2.3 The  Heuristic  Nature of the  Algorithms 

Both  the recusrsive selection and  adjacency  algorithms  are  heuristic  in  the  sense  that  they 
are  not proven to  statistically meet the specified decision criteria  (i.e., for the PAC criteria 
select a ranking  that satisfies equation (1) with  probability 1 - 6 and  similarly for the EL 
criteria average a ranking loss  specified t y  c l c l t I : L t , i o l l  ( : I )  l ( ~ s ~  t l l c l l l  I I I ( ,   W ~ I I I ( ~ ~ I O ( I  O O I I I I I ~  

Indeed,  several  aspects of these  algorithrns make i t  cxt,rv111tll\. t i i l l i c , l 1 l t  t o  ! ) I ' O \ S I '  I I I ; I I  I t i ( , \  

would (probabilistically) achieve the  corresponding decision criteria. Tllcso tLsp(!(,tzs I I I ( . I I I ( I ( > :  

0 Sharing of samples: In  order  to have n1 samples for a differential  distribution  (i.e. 
blocking) for H1 and Hz,  it  takes n1 samples of H I  and n1 samples  on the  the  same 
problems for Hz.  Our  algorithms  further  reduce  the  sampling cost by reusing  these 
samples  in  differential  distributions  comparing H1 to  other  hypotheses  and H2 to 
other  hypotheses.  This makes the  errors derived from  these  samples  not  independent. 
Hence we have traded  accuracy  and ease of analysis of the  algorithms for heuristic 
efficiency. Particularly in the recursive selection approac:h. smlples for. t , h o  lowclst 
ranking  hypothesis would  have been used in k: - 1 cliffelenti~~I colllpal.isollh. 

0 Heuristic  error  combination: Both  the recursive selection and  adjacency  error com- 
bination  models  are  heuristic  means of combining pairwise errors.  This is because 
the pairwise  errors  are  not  independent (see above).  Empirically we have  observed 
that  the pairwise  errors  tend  to  be  overestimated  but the  error  combination  function 
tends  to  under-combine. Overall empirically the combined error  estimates  tend  to  be 
reasonably  accurate, as the  remaining  sections show. 

0 Ignoranxe of lead switches and m,dtiple compo,r..iso.n pc1,tla.s: T)Ilrirlg t h v  S A I I I ~ ) I ~ I I K  1 ) ~ ) -  
cess, the ordering of the  hypotheses may change (e.g. ,  1,he (Jl(k!lillg o L  sa~l~plc, I I I ( $ ; I I I S  

may change).  This  means  that  implicitly,  the decision depended 0x1 an  additiorlal 
pairwise  comparison that may not be reflected in  the final set of comparisons con- 
tributing a pairwise  error.  This complexity could be avoided by fixing the  order of the 
hypotheses  after no samples. However, this would  require  more  samples as is would 
involve showing  €-dominance of a hypothesis over a higher sample  mean  hypothesis 
(indeed,  it may never converge). We choose to ignore this  complexity  and  base  the 
combined  error  used  in the  stopping  condition  on  the final ordering. 

0 Use on  non-normal  distributions: In  many of the  applications  described in the re- 
mainder of this  article,  the real-world data is distributetl in a .  I I ~ ~ ~ I K E ~  u o t .  very simlax 
to  normal  distributions (we further  investigate  this issue later in the  article). The 
algorithms we describe  are  heuristic  in  that  they  presume  that  the  data is normally 
distributed even though  this is not the case. 

to  both (i.e.,  currently  ranked  between  them).  The variance of the  differential  distribution  makes  its 
maximum  contribution when the  sample  set is small, so, e.g.,  with p1-2 = 2, al-z = 2, nl-z = 2, 
pz--3 = 2, (TZ-3 = 2, and 122-3 = 2, there  exists a configuration for which p1-3 = 4, (TI-3 = 8. The 
expected losses are EL(Hl ,  H Z )  = 2.05, EL(H2,  H 3 )  = 2.05, but EL(H1,  H 3 )  = 4.80 > 4.10. 
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2.4 Other   Relevant   Approaches 

h I (  1x1 51 ~ \ ~ I ( I ; I , I . ( I  5t,i\.t ist i r a  I r;LIlkirlg/s~:lec,tiorl approaches make strong  assumptions  about  the 
form of the  problenl  (e.g.,  the variances associated  with  underlying  utility  distribution of 
the hypotheses  might  be  assumed  known  and  equal).  Among  these, the  method of Turnbull 
and Weiss (Turnbull & Weiss, 1984) is most  comparable  to  our  PAC-based a p p r ~ a c h . ~  

Turnbull  and Weiss' algorithm is a  sequential  interval-based  procedure for selecting 
the member of a population  with  the  largest  mean.  They  treat  hypotheses as normally 
distributed  random  variables of unknown  mean that have  unknown and possibly unequal 
variance.  Their  algorithm also carries the  additional  stipulation  that  the  hypotheses  be 
independent.  The  procedure  consists of taking  an  initial  sample of no observations  on each 
of the  hypotheses  and  then  taking  samples  sequentially  according  to  their  stopping  criteria. 
When t,he stopping  criteria has been  satisfied, the  hypothesis  with  the highest sample  mean 
is chosc:n. Thc stopping criteria is that, the  inequality 2 5 5 is satisfied,  where Si and 
ni are  the  sample  mean  and  the  number of samples of the  ith hypothesis  and n* is chosen 
according to  the indifference interval E and  the confidence level y*. In  particular, n* = ;z d2 

and d is chosen to  satisfy S-ww(F(y+d))k-lf(y)dy = y* where F(y)  and f(y)  are  the  cumulative 
distribution  function  and  probability  density  function of the  standard  normal  distribution. 

While  it is still  reasonable to use this  approach when the  candidate  hypotheses  are not 
independent, excessive statistical  error or unnecessarily large training  set sizes may result.  In 
the case that  the hypotheses  are  truly  independent,  Turnbull  and Weiss' technique  should 
be  able  to  exploit  this knowledge and  outperform  our  methods which do  not  adopt  this 
assumption. 

SZ 

3. Empirical  Performance  Evaluation 

We  now turn  to empirical  evaluation of the hypothesis  ranking  techniques  on both  synthetic 
and real-world datasets.  This  evaluation serves three  purposes.  First,  it  demonstrates  that 
the techniques  perform  as  predicted  (in  terms of bounding  the  probability of incorrect selec- 
tion or expected loss).  Second,  it  validates  the  performance of the  techniques  as  compared 
to  standard  algorithms  from  the  statistical  literature.  Third,  the  evaluation  demonstrates 
the  robustness of the new approaches  to real-world hypothesis  ranking  problems. 

A n  ~ x l ) ( ~ i n l ~ ~ ~ t i d  trial consists of solving a hypothesis  ranking  problem  with a given 
t c ~ c . l l r r l c [ t ~ c ~  ; I I I ( I  ; I  gi\-on sc5t. o f '  pro1)lml and c:ont,rol parameters. We measure  performance 
by ( I )  how  well the  algorithms  satisfy  their  respective  criteria;  and (2) the  number of 
samples  taken or, alternatively,  the cost (in  seconds) of executing  the  algorithm. Since the 
performance of these  statistical  algorithms  on any single trial provides little  information 
about  its overall behavior, each trial is repeated  multiple  times  and the  results  are averaged 
across  trials.  Synthetic  experimental  trials were repeated 500 times, while trials  on  the 
real-world data were repeated 100 times.  Because the PAC and  expected loss criteria  are 
not  directly  comparable,  the  approaches  are analyzed separately. 
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Figure 3: The  stepped  means  hypothesis corlfiguration. 

3.1 Evaluation on Synthetic  Datasets 

Evaluation  on  synthetic  data is used to show that: (1) the techniques  correctly  bound  prob- 
ability of incorrect  ranking  and  expected loss as predicted when the underlying  assumptions 
are valid even  when the underlying  utility  distributions  are  inherently  hard to  rank lo, and 
(2) that  the PAC techniques  compare favorably to  the  algorithm of Turnbull  and Weiss in 
a wide  variety of circumstances. 

For the  synthetic  datasets,  the  utility  distributions of the hypotheses were modeled as 
random  variables defined on  some  underlying  parameterized  distribution.  Thus,  character- 
izing a ranking  problem  consists of choosing some  number of hypotheses  to  rank  and  then 
assigning values for parameters  representing each utility  distributions for these  hypothe- 
ses. In our  case, we model the utilities as independent  normal  random  variables  with some 
mean  and  standard  deviation.  Thus, if  we let k be  the  number of hypotheses,  then  each hy- 
pothesis  ranking  problem is described by the 2k parameters specifying the  expected  utility 
and  utility  standard  deviation for each hypothesis.  In  general, while several  more  parame- 
ters  may  be  required  to  characterize a ranking  problem fully'', the  number of hypotheses 
and  the choices for the  parameters of the  utility  distributions  underlying  these  hypotheses 
characterize  the overall difficulty of the  ranking  problem. 

The  statistical  ranking  and  selection  community uses a  standard family of selection 
problems  with known difficulty to  analyze  the  performance of hypothesis selection strategies. 
The  method, called the  least favorable configuratiou (LFC) of t , l w  popuht,iou I l l ( ~ i ~ , l l s  is 1 lli1,t 

assignment of the  parameters  to  distributions which is most likely to c:ausc a tc:chniquc~ tJo 
choose a wrong  hypothesis  and  thus provides the most severe test  ofthe technique's  abilities. 
Under  this  configuration,  all  utilities  are  independent  normally  distributed  variables of equal 
variance. k - 1 of the hypotheses have utilities with  equal  expectation, p ,  and  the  remaining 
hypothesis has expected  utility p + E .  

Because we are  interested  in  hypothesis  ranking  problems  rather  than  selection  problems, 
we use a generalization of the  LFC  that we call stepped  means.  In  this  configuration,  one 
of the hypotheses is assigned expected  utility p and successive hypotheses  are assigned 
expected  utility p - i e  for i from 1, ..., k - 1 (Figure 3) .  

In  general,  problems based  on the loast, ftlvorahlc ( ~ o ~ ~ ~ ~ ~ l ~ ~ ~ ~ t , ~ ~ ~ ~ ~  l)cwJlllc, I I I O I ~ O  ( i ~ f f i l , ~ ~ I r  

(i.e., require more samples) when the  number of hypothctses k: j ,l(. , .(~i~s(:s. t , l w  ( : O ~ ~ I I I I ~ I I  I l t  i l i t ) ,  
variance 0' increases, or the difference in the  means of the utility distributions  decreases. 111 
the  standard methodology, a technique is evaluated by its  ability  to achieve a confidence of 

10. Configurations that contain  hypotheses  with  high  variance  relative to  the  separation  between  their  means 
are  more difficult to  rank. 

11. For instance, when samples  are  allocated  rationally  in  (Chien  et  al., 1995), it  becomes  necessary to  assign 
parameters  to a  cost distribution  as well, or if only  a few of the  candidate hypotheses  were to  be  ranked, 
the  number of hypotheses to  rank would  be another  problem  parameter. 
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correct selection y* using several settings for k and $.  This last ratio combines o and E into 
a single yuantit,y which, as it increases, makes the  problem more difficult. This  methodology 
ext,ends to stepped  means directly. 

The hypothesis  ranking  strategies themselves have algorithm  control  parameters that 
govern how they  attack a problem. The PAC  techniques  have  three  control  parameters: an 
initial  sample size no, a desired confidence of correct ranking y* and  an indifference setting 
e l2 .  The  expected loss techniques have two  control  parameters: an  initial  sample size no 
and a loss threshold H*.  

The observed number of samples  required  and achieved accuracy of the PAC techniques 
on the  stepped  means  configuration  are shown  in  Table 3.1. The  results  indicate  that all 
systems  are roughly comparable in the  number of examples  required to choose a hypotheses. 
As expwt,td, the n1lrnbc.r of examples increases with IC, y*, and :. The PAC,dj algorithm 
r ( ~ ( 1 l ~ i u ~ ( l  t , l ~ c .  l(~il~st~ 1 1 1 1 m h o r  of sxmples b u t ,  was inconsisttent in  meeting  the  desired  accuracy 
bound (as miic:ated by its failure to meet the  prescribed  error  bound  in  several  cases).  It is 
interesting  that  the  Turnbull  and Weiss method  did not significantly outperform  the PAC 
techniques  despite the fact that  the  algorithm assumes that  the hypotheses  are  independent 
(as is the case in the  stepped  means  configuration), while the PAC approaches  do  not  make 
this  assumption.  In  this  comparison,  the  principal  performance  metric is the  number of 
samples  required  to achieve the  requested  ranking,  both  methods were  effective at achieving 
the  requested  accuracy. 

In  the  expected loss experiments, we ran  the  expected loss hypothesis  ranking  algorithms 
o n  t h ~  sitme st,c:ppcd moms configurations described  above  with a range of expected loss 
l)oIlrI(ls. T'i\,t)l(> :I. 1 shows thv rt:sldt,s of this  experiment, displaying the  number of samples 
rcvluircd t ,o  pr.ocluc:cs a r.auking and  the average observed loss  for each configuration.  These 
results show that  the EL,,, algorithm  correctly  bounded  the loss and  that  the EL,dj al- 
gorithm  required less samples than  the EL,,, algorithm,  but  did  not  correctly  bound  the 
expected loss (since the observed loss was greater  than  the loss bound H*.I3 

3.2 Evaluation on Real Datasets 

The  test of real-world applicability is based  on data drawn  from  several  datasets  relating 
to spacecraft design and  the processing of science data  gathered  in  the  context of planetary 
vxl)lor;Lt,iolr. TIL(: first two diltasets we investigate  relate  to  spacecraft design optimization 
l)n)l)1(~1r1s I I I  w l l i c , l l  t h o  1 l y ) o t h w w  wc' wish t,o rank are  candidate  solutions  to  the design 
~ I O ~ ) I ~ > ~ I J .  '1'11(! t.hirtl a t ~ t l  last, dat,aset we exarninc:  involves ranking various lossless image 
compression  approaches  based  on their  performance  on a large  set of terrestrial images col- 
lected by the spacecraft Galileo. Cost of evaluation is given in seconds for all  empirical data 

12. Note  that  in our formulation of the  stepped  means  test for the PAC approaches, E is both  the difference 
in the  expected  mean of successive  hypotheses and the indifference  interval of the  algorithm.  Thus, E 

plays the roles of both problem  parameter  and  control  parameter  here. 
13. One  confusing  point is that for  identical  hypothesis  and  ranking  algorithm  settings,  one  can  observe a 

lower loss when  ranking a larger number of hypotheses.  This is because the  algorithm  first  divides  the 
loss over the  number of pirwise  comparisons.  Thus, for the  same overall  error (or expected loss bound), 
with  more  hypotheses, the pairwise  expected  error  (or loss) will be  smaller if there  are  more  hypotheses. 
The  ranking loss is defined  previously. Thus,  it is possible for the observed loss to increase or decrease 
compared  to t,he same  set,tings  with fewer hypotheses. 
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5  0.75 3 321  (0.95) 314 (0.93) 161 (0.75) 
5 0.90 2 245 (0.98) 245 (0.97) 163 (0.91) 
5 290 (0.92j 409 (o.glj 445 i0.98j 3 0.90 
5 

345 (0.85) 624 (0.91) 558 (0.92) 2 0.75 10 
377  (0.92) 538 (0.98) 541  (0.98) 3 0.95 5 
216 (1.00) 294 (0.98) 299 (0.98) 2 0.95 

10  0.95 2  821  (1.00) 877  (0.97) 661  (0.94) 
10  0.95 3 1,462  (0.99) 1,569  (0.98) 1,164  (0.93) 

Table 1: Estimated  expected  total  number of observations by PAC algorithms  in  the 
stepped  means  configuration. Achieved probability of correct  ranking is shown 
in  parenthesis. 

Parameters 
" 

Table 2: Estimated  expected  total  number of observations of EL algorithms  in  stepped 
means  configuration.  Observed average loss of produced  rankings. 
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h c ~ a l ~ s c ~ .  urllikP the  synthetic  problems,  the cost of sampling  a  hypothesis is not  constant  in 
t I I C W  tlo1ll;l.irls. TiL1)1(’ 3 gives a surnrnary of the  three  ranking problems we considered. 

Dataset 
maximize penetration probability impact  orientation penetrator diameter DS-2 Penetrator 
optimization criteria random  variables fixed parameters 

penetrator length maximize penetration depth impact  velocity 
I soil  density 

DS-2  Aeroshell 1 1  fore  body  overlap 1 stagnation pressure  coef. I minimize  weight 
nose  cone  angle 
bluntness ratio 
fillet  radius 
outer diameter 
tail geometry 

I A ) S S I ~ S S  Image Comp. randomly  selected  test  image I maximize  compression ratio compression  method 

T ; I , I ) I ( T  :$: I)cw.ript,iotl of dat,asot,s Ilseltl for algorithm  evaluation. 

3.2.1  DS-2 PENETRATOR 

The goal of the New Millennium  Deep  Space  Two (DS-2) mission is to deliver a pair of 
microprobes to  the  planet  Mars for scientific study of the  Martian soil. The  probes will 
be released from  orbit,  travel  through  the  Martian  atmosphere,  and  embed  themselves  in 
the soil near the  southern  polar ice cap.  The  primary science objectives for the mission are 
(Balacuit., 1997): 

0 t,o determine if ice is present, below the surface of Mars, 

0 to measure  the local atmospheric  pressure, 

0 and  to characterize  the  thermal  properties of the  Martian  subsurface soil. 

The goal of this  spacecraft design problem is to  determine a good set of physical  dimen- 
sions for the  penetrator - a small,  robust  probe designed to  impact  the  surface  at  extremely 
high velocity and to operate in the  extreme cold. Specifically, we use design and  simulation 
data from the DS-2 mission penetrator  design. 

For our cast,ing of t,hc design problem, we hold the  shape of the  penetrator  constant  and 
~ ( ~ t l ~ ~ r i t t ( ~  ticlsigrl c:;l.rlclid:lt,f>s hxwd on  diff‘erent, values for the variables of penetrator  diameter 
, I I I I I  I ( , I I ; I  1 1  I . ~ ( I I  ;I sl)c’c,ific. tl(’sig:ll ; I  s;1,1111)1(3 is t ,akcrl  by xquiring  impact  orientation,  impact 
veloc:lt,y, a11 t1  soil tl(~usit,y f’rolrl a parameterized  multivariate  distribution  and  then calling a 
complex  physical  simulation to determine if and  to  what  depth  the  penetrator  bored  into 
the  Martian  surface.  The goal of the  penetrator design problem is to  determine  the physical 
dimensions of the  penetrator  that maximize the probability of penetration,  and  in cases of 
penetration, maximize penetration  depth. 

Tables 4 and 5 show the  results of applying  the  PAC-based,  Turnbull,  and  expected loss 
algorithms  to a ranking  problem  in  which the system is requested to  rank 10 penetrator 
designs.14 In  this  problem  the  utility  function is the  depth of penetration of the  penetrator, 

14. “Trl~e” expect,ed  utility values were computed by performing 20,000 samples  and  using the  sample  mean 
tor. thls Iilrgr hiLnlI)I[’ as ground truth. These expected ut,ilities were then used to  compute PAC €-validity 
o f  t , I I I ~ I I I ~ S  r ~ ~ ~ r l  o l ) x ~ r v c ~ t l  loss 1lslng t ,hv  provided definitions. 
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with  those cases in which the  penetrator does not  penetrate  being assigned zero utility. As 
shown in  Table 4, both PAC  algorithms significantly outperformed  the  Turnbull  algorithm, 
which is to  be  expected  because  the  hypotheses  are  somewhat  correlated  (via  impact  orien- 
tations  and soil densities).  Table 5 shows that  the EL,,, expected loss algorithm effectively 
bounded  actual loss but  the EL,,ii algorithm was irlcorlsist,ent. 

10 92 (0.94 ’ 144  (1.00) 534 (0.96) i 0.75 
10 98 (1.00) 160  (1.00) 667  (0.98) 2  0.90 

Table 4: Estimated  expected  total  number of observations to  rank DS-2 spacecraft  designs. 
Achieved probability of correct ranking is shown in  parenthesis. 

10 
0.06 90 0.03 200 0.05 10 
0.14 77 0.05 152  0.10 

I I 

10 I 0.02 I 378 I 0.03 I 139 I 0.03 

Table 5: Estimated  expected  total  number of observations  and  expected loss of an incorrect 
ranking of DS-2 penetrator designs. 

3.2.2  DS-2 AEROSHELL DESIGN R.ANKING 

The  objective of this  problem is to design an aeroshell for the soil penetrator  described  in 
the previous  section that gives the  appropriate  entry velocity with  minimum weight. Design 
candidates  are defined by six continuous variables that represent various geometric  quan- 
tities:  the  extent  to which the fore body overlaps the  aftbody, nose cone angle,  bluntness 
ratio, fillet radius,  outer  diameter,  and  the  tail geometry. Candidate designs (hypotheses) 
are  evaluated by running a simple physical simulation of the aeroshell’s behavior.  Such a 
sample is taken by running  the  simulation  with  the fixed design variables of the  hypothesis 
and a value for the  stagnation  pressure coefficient taken from a norm;d dist,ribllt,iorl. Thcl 
simulation  computes values for the achivvc:tf c11txy vc:lo(.iLy a l l ( i  I I I ( $  111;I.ss I J I ’  t . l l c ,  ; I ( ~ I  ( J ~ I I I , I I .  
then  the weighted sum of the reciprocals of these values is maxirrllzeti. 

We  give the  results of ranking  three, five, and  ten  hypotheses using the  Turnbull, PAC, 
and  expected loss algorithms  in  Tables 6 and 7.15 

As in the previous  experiment,  the PAC-based algorithms  outperformed  the  Turnbull 
algorithm  in  all cases. While the PAC,, algorithm  represents a significant increase  in 

15. Again,  deep  sampling (500 samples)  was  performed to  obtain  the  “correct”  ranking,  against which these 
algorithms  are  compared. 
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performance  here, we note  that  it  did not achieve the desired level of confidence in  all cases; 
both t,he Turnbull  and PAC,.,, algorithms  did achieve the  required confidence. 

k 

3.8  (1.00) 11.3 (1.00)  22.9  (1.00) 3 0.75 3 
3.5 (1.00) 8.4  (1.00) 8.9 (1.00) 2 0.75 3 

PACadj PACT,, TURNBULL y* 

3 14.0  (1.ooj j 7.1 (1.ooj 17.1  (1.ooj 2 0.90 
3 18.6 (1.00) I 7.2 (1.00)  38.2  (1.00) 3 0.90 

I 3 i 0.95 i 2 i 22.6  i1.ooi i 21.6  i1.ooi i 7.1 i1.ooi 1 

Parameters EL,,, ELadj 
I k (  H* I Execution  Cost I Loss I Execution Cost I Loss I 

Table 7: Estimated  expected cost (in  seconds)  and  expected loss of an incorrect  ranking of 
DS-2 aeroshell designs. 
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3.2.3 LOSSLESS IMAGE COMPRESSION ON GALILEO  IMAGE DATA 

This  problem  utilizes a large  set of raw image data acquired by the Galileo spacecraft.  Each 
of the images is 256 by 256 in size and is made  up of greyscale pixels ranging  from 0 to 255 in 
intensity. The goal is to select the lossless compression  method16 that performs  best  on  this 
class of images. The performance of an irnatge currlpressiou ;tlgorit 11111 O I I  ; t  I ) i l l ' t , i (  11 l ;u  ~ I I I ; I , ~ ( I  

could be measured  in a number of ways. For c:xanlple. c>xoc:utiorl 1 , i m o .  c . o r l l I ) r x ~ ~ s i o l l  I . ; I I  i o .  
and  image  quality  (in  the case where lossy compression rnet,hods arc! beillg considered) c : o l l l d  

define algorithm  performance.  In  our  tests we chose to consider only the compression ratio 
achieved by a given compression method as our utility  function.  To  sample  each  method 
(hypothesis),  an image is randomly  selected,  the  method is applied  to  that  image,  and  the 
achieved compression ratio is recorded. 

Given below (Tables 8 and 9) are  the  results of ranking  three, five, and seven hypotheses 
using the  Turnbull,  PAC,  and  expected loss algorithms.  Ranking  correctness  was  determined 
by comparison to a "correct'' ranking  established by sampling each compression method  on 
a set of 1500 distinct images. 

We again  note  the  substantial Performance irnprovcwenl. tllo PA(.'-t);wcI ;dgorit 11111s 
have over the  Turnbull  algorithm.  Although  both  the  Turnbull  algorithm  and  the PAC 
algorithms  (Table 8) achieved the desired confidence level, the  adjacent version of the EL 
algorithm  (Table 9) failed to  bound  the loss to  the specified level in over half the cases. 

It is interesting  to consider the  results  presented  in  this  section  in  light of the  fact  that 
each of the  statistical  techniques  being used  makes  some  form of normality  assumption.  In 
fact, all three of the problem  domains we investigate have some  number of hypotheses  whose 
utility  functions  are not normally  distributed. From past  experience  it is known that  utility 
functions  in  the DS-2 Penetrator  domain  (Section 3.2.1) are highly non-normal;  Figure 4 
illustrates  the difference between data  that is normally  distributed  and  data  that is not. 

" t 1 

n I /  

Figure 4: A  comparison of (a) data  t,hat is normally  distributed  with  high likelihood and  (b) 
data  that is  very  likely not normally  distributed. In each case. the  histograrn of 
experimental  data is shown  in solid boxes; data  drawn  from a normal  distribution 
with  the  same  mean  and  standard  deviation is shown with  dashed lines. 

To  determine  the  extent  to which the utilities of hypotheses  in the  remaining two do- 
mains  are  normally  distributed we applied the Kolmogorov-Smirnov test (see Appendix  A 

16. The seven  compression methods we considered  were: CALIC, lossless JPEG, GIF, TIFF, pack,  gzip, and 
compress. 
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Table 8: Estimated  expected cost (in  seconds)  to  rank lossless image  compression ap- 
proaches on Galileo image data. Achieved probability of correct ranking is shown 
i n  parmt,h(:sis. 

Parameters EL,,, E L d j  

/ k l  H* I Execution  Cost I Loss I Execution  Cost I Loss I 

Table 9: Estimated  expected cost (in  seconds)  and  expected loss of an  incorrect  ranking of 
DS-2 penetrator designs. 
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for details).  The  test  determined  that none of the  ten  hypotheses  from  the DS-2 Aeroshell 
domain  (Section 3.2.2) had  normally  distributed utility.  Additionally,  only  two of the Seven 
hypotheses  from the image  compression domain  (Section 3.2.3) were shown to have greater 
than 90% likelihood of having  normally  distributed  utility  functions17. For these  reasons, 
evaluating  the  ranking strat,egies  on these datasets provides a, ~)artic111arly strong t , w t  o f  t l w  
applicability of the techniques. 

We draw the  reader's  attention  to  the  particularly large disparit,y i n  pwforrrrar~c:c t)c!t,wcwl 
the  Turnbull  algorithm  and  the PAC-based algorithms in the image  compression domain, 
especially apparent when the  number of hypotheses,  and  the confidence level, are  high. 
Additionally,  this  problem  domain  has two hypotheses  with  normally  distributed  utility 
and five that  are non-normal.  These  observations suggest that  the PAC-based  algorithms 
perform  better  (in  relative  terms) when faced with a domain  that  violates  the  assumption 
of normality. 

4. Discussion and Conclusions 

There  are a number of areas of related work. First,  there  has beer1 considerable arlalysis of 
hypothesis  selection  problems. Selection problems  have  been formalized using a Bayesian 
framework  (Moore & Lee, 1994; Rivest & Sloan, 1988) that does  not  require an  initial 
sample,  but uses a rigorous encoding of prior knowledge. Howard  (Howard, 1970) also 
details a Bayesian  framework for analyzing  learning cost for selection  problems. If one 
uses a hypothesis selection framework for ranking,  allocation of pairwise  errors  can  be 
performed  rationally  (Gratch  et  al.,  1994). Reinforcement  learning work (Kaelbling, 1993) 
with  immediate feedback can also be viewed as a hypothesis  selection  problem. 

The framework  presented  invites future work in a number of directions.  Currently,  the 
stopping  criteria used are  relaxations of' the  ranking  reyuirenlent. Anot,her apl)r.oac,ll t,ltat, 
could be used is to  bound  the resources available for ranking.  Limiting t,tw t1umt)w of 
samples where sample cost is high and  limiting  the  time of computation (so that we have 
an  anytime  algorithm)  are two straightforward  application  areas. 

Another  area for future work is discovery of composite  strategies or hypotheses. Thus 
far we have  examined  ranking  (and  in  other  articles,  selection) of a hypothesis  with high- 
est  expected value over an  entire  distribution. For example,  learning a scheduling  control 
strategy  that will do well  over a distribution of problems. However, it is likely that for 
most  distributions of problems,  there  exists a composite  strategy  which  would  outperform 
any single strategy. For example,  a single strategy might be  to  apply  method  A  to solve 
a problem. A composite  strategy would be, test the  problem for feat,ure X. if X true q ) -  

ply  method A, else apply  method B. Tllesc conrpositc st,r.;Lt,('gi(:s c~or.r.c~spoI~(l I . ( J  t l l , q ( ~ ~ , i l  1 1 1 1 1  

portfolios as named  in  Operations Research. Indeed the result,s o f  applying metllocis co111tl 
also be viewed as  strategies.  One might have the  composite  strategy of trying  method A 
for 10 CPU seconds,  then if that fails trying  method B. Of course, in  all these composi- 
tion  and  portfolio  approaches,  the difficulty isefficiently proposing  and  evaluating  plausible 
compositions. For even a small  set of base  strategies  the  number of copositions is enormous. 

17. For reference, the  data  in Figure 4 (a) was  normally  distributed  with 97.5% likelihood,  according to  the 
Kolmogorov-Smirnov test. 
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In  summary,  this  paper  has  described  the  hypothesis  ranking  problem,  an  extension  to 
t l l v  hvlmtllclsis sc . l cc~ t io r l  problem. We defined the  application of two decision criteria, proba- 
/ I / ! ,  ' " I J J ~ J / J . / ' / " / , " / ~  ly/ c . r w . c j c , /  i t l I ( I  c x p r t e c l !  Loss .  t , o  this problem. We then defined two families of 
algorithms, recursive selection and adjacency, for solution of hypothesis  ranking  problems. 
Finally, we demonstrated  the effectiveness of these  algorithms  on  both  synthetic  and real- 
world datasets,  documenting improved  performance over existing  statistical  approaches. 
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Appendix  A.  Applying  the K-S Test to  Real  Datasets 

The Kolmogorov-Smirnov Test is a statistical  means of accepting,  with a certain level of 
confidence, the hypothesis that some  sampleset  fits a parametric  distribution  with a given 
set of parameters.  The  method  compares  the  CDF  generated by the empirical  distribution 
to  that of the corresponding  parametric  distribution  (i.e.,  with  estimated  parameters). The 
K-S test gives a confidence based on  the  maximum, D ,  of the discrepancies  between  these 
two CDFs: 

I ~ ( I I  0111 1,111 l ) o s ( - h  w(' wisll t , o  c i c t , c m ~ i l ~ c ! .  for c:ac:ll hypothesis in  a given domain,  whether 
the values of the utility function  are  normally  distributed or not.  In each case, half of the 
utility  samples  taken  are used to  compute  the  mean  and  standard  deviation of the  normal; 
the  remaining half are used to  compute  the  CDF. 

A . l  DS-2 Penetrator 

20000 samples  taken. 

tlcsign n ~ m b ( ~  

<< 90% likelv 0.1202 2 
<< 90% likely 0.1415 1 

normally  distributed? m,an:IF~ ( x )  - F2 ( x ) /  

.. . . 
L 

3 
<< 90% likelv 0.1261 4 
<< 90% likely 0.1020 

5 

90% likely 0.1020 7 

<< 90% likely 0.1207 
6 

<< 90% likelv 0.1493 8 

<< 90% likely 0.1261 

9 
<< 90% likely 0.1261  10 
<< 90% likely 0.1461 
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A.2  DS-2 Aeroshell Design Ranking 

500 samples  taken. 

2 
< 90% likely 0.08 3 
< 90%  likely 0.08 

4 

< 90% likely 0.08 10 
< 90% likely 0.08 9 
< 90%  likely 0.08 8 
< 90%  likely 0.08 7 
< 90% likely 0.08 6 
< 90% likely 0.08 5 
< 90% likely 0.08 

A.3 Lossless Image Compression on Galileo Image Data 

200 samples  taken. 

compression  method  normally  distributed? mazlF1 ( x )  - Fz(z)( 
gif 0.10 

< 90% likely 0.14 compress 
90% likely 

97.50/; likelv 0.09  gzir, 
<< 90%  likely 0.19 calic 

" I  

j P e& << 90%~",1 0.18 
pack 

< 90% likely 0.11 tiff 
< 90% likeiv 0.12 
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